The Role of Genetic Factors in Determining Phenotype, and what are the Laboratory Markers which Correlate Best with Clinical Severity

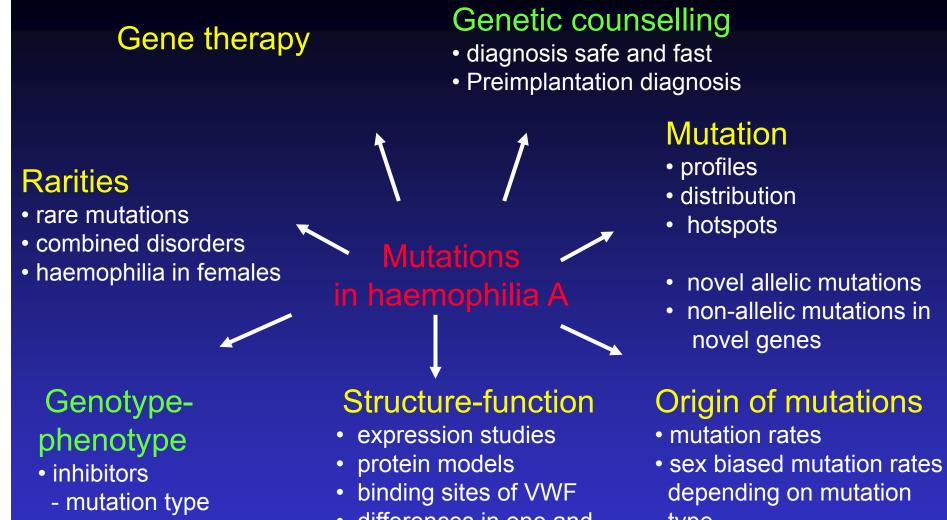
Johannes Oldenburg

Institute of Exp. Haematology and Transfusion Medicine University Clinic of Bonn

> Regional Haemophilia Meeting April 19-20th 2009, Esfahan, Iran

Phenotype Genotype Determinants for Phenotype

- Inhibitor formation
- Severe haemophiliacs with mitigated bleeding phenotype
- VWD
- Assay Discrepancies between one- and two stage FVIII-Assays


Phenotype vs Genotype

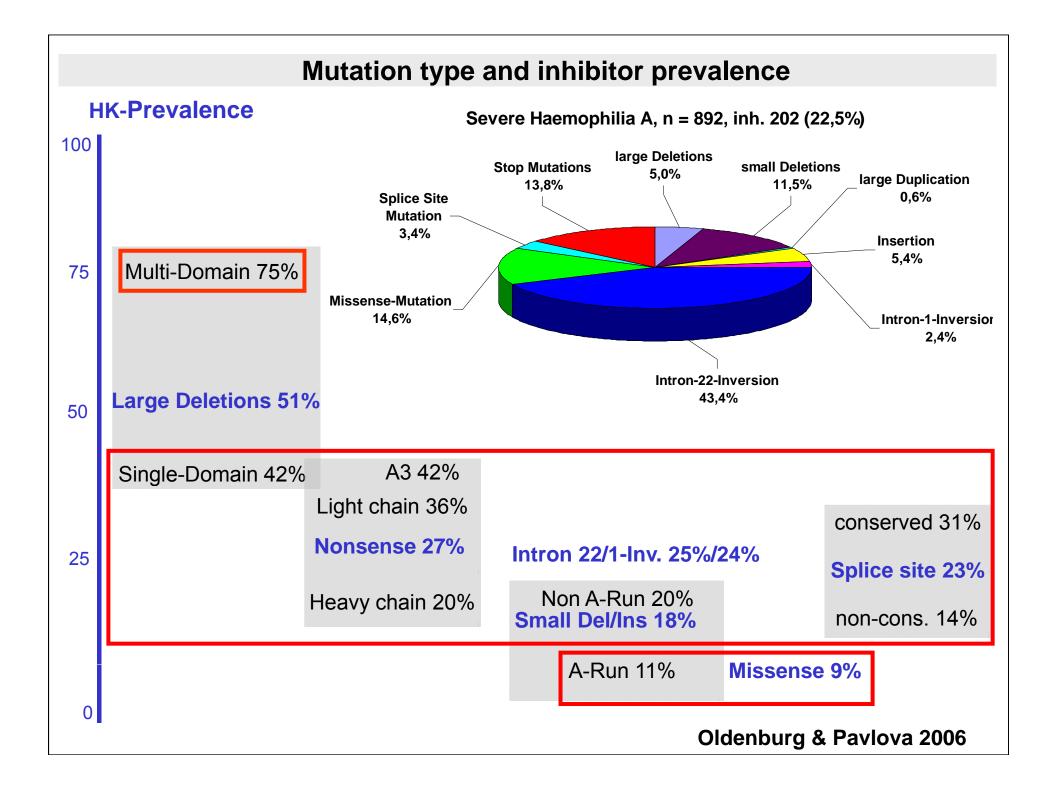
Phenotype

- Variable over time
- actual situation
- Fast (minutes to hours)
- Few costs
- Monitoring therapy
 e. g. substitution, anticoagulation
- Quantitative, complex information sometimes high variance

Genotype

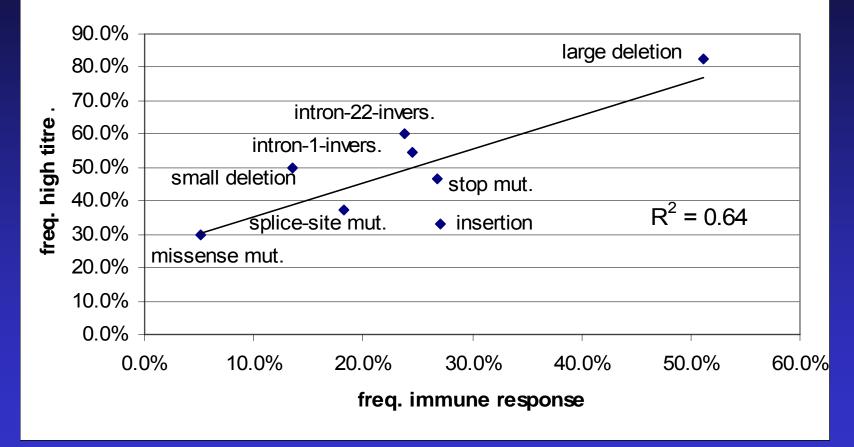
- Do not change during live
- result may have no actual correlat
- Fast (hours to days)
- Still more cost intensive
- Risk assessment of relatives
- Qualitative, Yes or No

- HLA/Cytokines
- degree of severity/ clinical course
 - special mutations
 - modifying factors

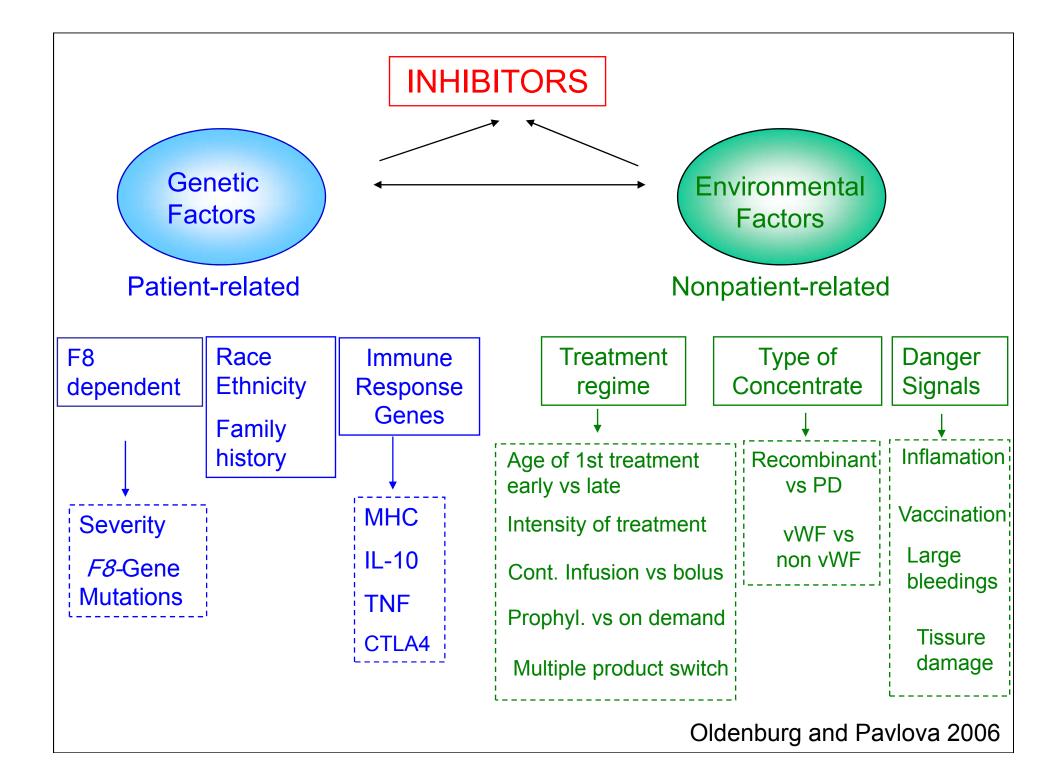

- differences in one and two stage FVIII assays
- super FVIII molecules
- type
- somatic mosaicisms

GENOTYPE – PHENOTYPE

Development of Inhibitors in Haemophilia A


- Most severe and frequent complication of treatment
- 20-30% of severe haemophilia A patients
- neutralisation of substituted FVIII
- alternative treatment options are limited, increased morbidity and mortality
- eradication of the inhibitor (very expensive)

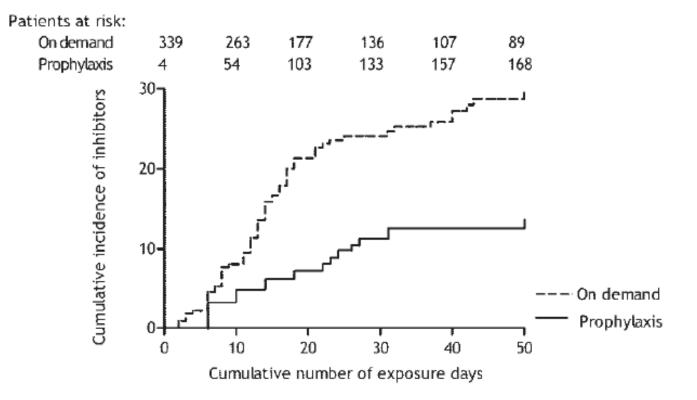
Are inhibitors predictive? Are they fate or preventable?



Mutation Type and Inhibitor Titre

immune response and high titre

Oldenburg et al. unpublished data


Peak treatment moments may trigger inhibitor formation

n=366 severe HA patients; 87 [24%] of patients with inhibitor

	Proportion of Inh (%)	Crude RR (CI)	<i>P</i> for trend	Adjusted RR (CI)	<i>P</i> for trend
At first factor VIII exposure None	44/229 (19)	1.0		1.0¶	
3 to 4 days	7/36 (19)	1.0 (0.5-2.3)	.98	1.1 (0.5-2.4)	.87
At least 5 days During first 50 exposure days	32/57 (56)	3.3)2.1-5.3)	< .001	3.1 (1.9-5.0)	< .001
After peak treatment moment					
compared with before	NA	1.6 (1.0-2.7)	.06	1.5 (0.9-2.5)¶	.14
After major peak treatment moment compared with		\frown			
before	NA	2.0 1.3-3.1)	.002	1.6 (1.0-2.6)¶	.03
After major surgical procedure					
compared with before	NA	1.4 (0.8-2.5)	.21	1.3 (0.8-2.3)¶	.32
		0		lood 2007 40	0-4040

Gouw et al.: Blood 2007 109:4648

Incidence of inhibitor development according to treatment regime

Regular prophylaxis was associated with a 60% decreased risk of inhibitor development compared with on-demand treatment (RR, 0.4; CI, 0.2-0.8)

Gouw et al 2007

The good risk vs the bad risk patient

Good Risk Factors

<u>Genetic Background</u>

- Negative family history
- Non-severe haemophilia
- Caucasian origin
- Missense mutation
- IL10 134 negative
- TNF alpha A2 negative
- CTLA4-318 T positive

<u>Environmental</u>

- Early prophylaxis
- Absence of danger signals
- (type of concentrate)

Bad Risk Factors

Genetic Background

- Positive family history
- Severe haemophilia
- African origin
- Null mutation
- IL10 134 positive
- TNF alpha A2 positive
- CTLA4-318 T negative

<u>Environmental</u>

- Early event-based treatment
- Intensive treatment
- Continuous infusion
- Danger signals
- (type of concentrate)

Individualized treament strategy

Inhibitor development on a given genetic background may be not a fate but preventable by the right environmental action

Consequence

- Test for the genetic background (F8 gene mutation)
- Stratify treatment during the first 20-50 exposure days

Which is in case of a F8 gene mutation at high risk

- Avoid peak treatment moments
- Avoid elective surgery
- Avoid danger signals (vaccination)
- Early start of low dose prophylaxis

Phenotype Genotype Determinants for Phenotype

Inhibitor formation

- Severe haemophiliacs with mitigated bleeding phenotype
- VWD
- Assay Discrepancies between one- and two stage FVIII-Assays

Genotype - Phenotype

Why do some patients with laboratory severe haemophilia A

show a non-severe clinical course?

(rare bleeders inspite of having severe haemophilia A)

Mutation profile in severe Haemophilia A

(based on the analysis of 635 families)

Mutation Type	Relative
	%
Intron 22 Inversion	47.7
Intron 1 Inversion	1.2
Stop Mutation	12.4
Small Del./Ins.	13.7
Large Deletions	4.0
Splice Site	3.5
Missense Mutation	12.3
Mutation not found	4.2

Oldenburg and Pavlova 2006

Mutation profile in severe Haemophilia A

(based on the analysis of 635 families)

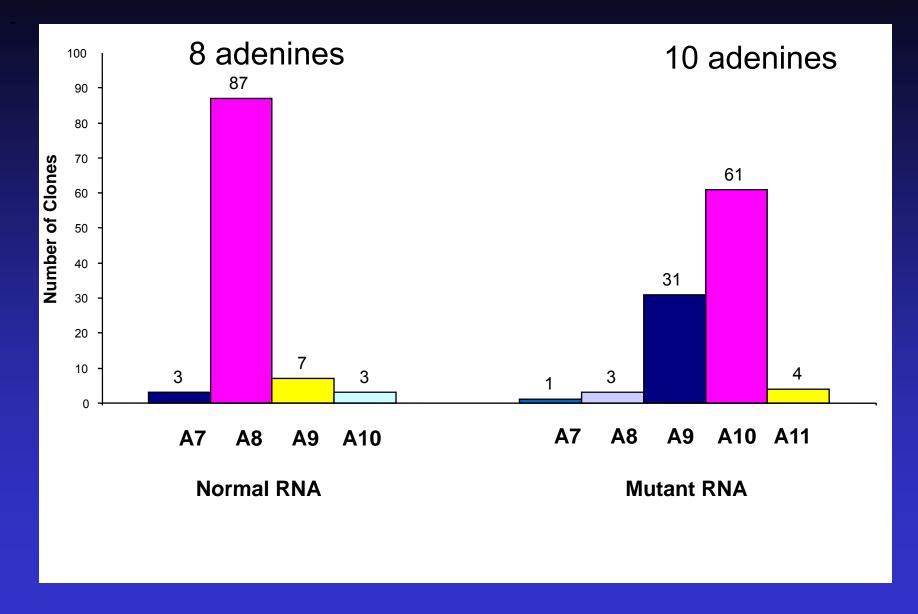
Mutation Type	Relative
	%
Intron 22 Inversion	47.7
Intron 1 Inversion	1.2
Stop Mutation	12.4
Small Del./Ins.	13.7
(In two adenine runs of B domain	(3.0)
Large Deletions	4.0
Splice Site	3.5
(at non-conserved positions)	(1,5)
Missense Mutation	12.3
Mutation not found	4.2

GENOTYPE - PHENOTYPE

Patients mutation	FVIII:C (IU/ml)	TEG-r (min)
Group A		
 Del-ACAC, codon 1187 Del-A, codon 1192 Del-A, codon 1192 Del-A, codon 1192 Del-A, codon 1192 	< 0.01 < 0.01 < 0.01 < 0.01	29 26 48 26
Group B		
 CGC(Arg) 1689 TGC(Stop) TAC(Tyr) 636 TAG(Stop) Intron 22 inversion (Prox.) Intron 22 inversion (Dist.) 	< 0.01 < 0.01 < 0.01 < 0.01	158 134 178 159

Oldenburg et al. 1997 Thromb & Haem

Series of adenine nucleotides


B-domain

CAA	GAA	AAA	AAA	ATT	CAG
				lle	
1190	1191	1192	1193	1194	1195
GCC	AAA	AAA	AAT	AAC	CTT
				Asn	
1438					

20% of all small deletions/insertions of the FVIII gene are located at one of these two sites

Oldenburg et al. 1997 Thromb & Haem

Partial correction of a frame shift T-deletion in an adenine run (A8TA2)

(Young et al. 1997, Am J Hum Gen)

Journal of Thrombosis and Haemostasis, 3: 2730-2737

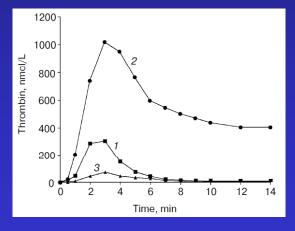
ORIGINAL ARTICLE

Factor V Leiden improves in vivo hemostasis in murine hemophilia models

A. SCHLACHTERMAN, * J. SCHUETTRUMPF, * J.-H. LIU, * C. F. FREGUIA, * R. TOSO, * M. PONCZ, * † R. M. CAMIRE* † and V. R. ARRUDA* † *Divison of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; and †Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA

Haemophilia and FV Leiden / Prothrombin Mutation

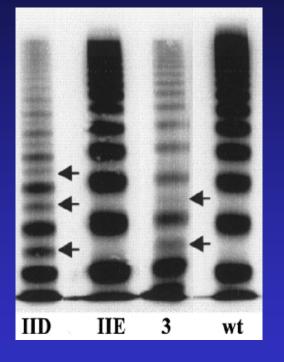
	No thrombophilia	With thrombophilia	p value*
Year of birth Age at first	1990 [1991-1999]	1991 [1982-1999]	0.54
bleeding: years [median/range] Therapy given: number [%]	0.9 [0.1-4.0]	1.5 [0.5-7.1]	0.009
on demand prophylaxis	58 [63.0] 34 [37.0]	8 [53.3] 7 [46.7]	0.67
Start of prophylactic regimen: Median/range values (years)	1.3 [0.1-6.7]	1.9 [0.8-7.0]	0.44
Factor concentrates used [%] pdFVIII rFVIII vWFVIII	27.3 48.5 24.2	33.3 55.5 11.2	0.33
Annual bleeding frequency	6 [0-30]	1.8 [0-7]	0.012

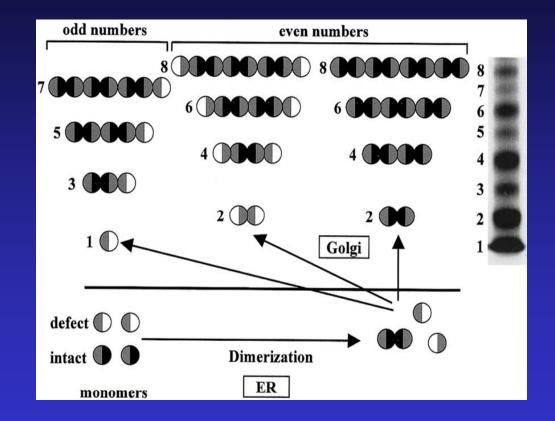

Kurnik et al. 2007 Haematologica

Laboratory Assessment of the Bleeding Phenotype

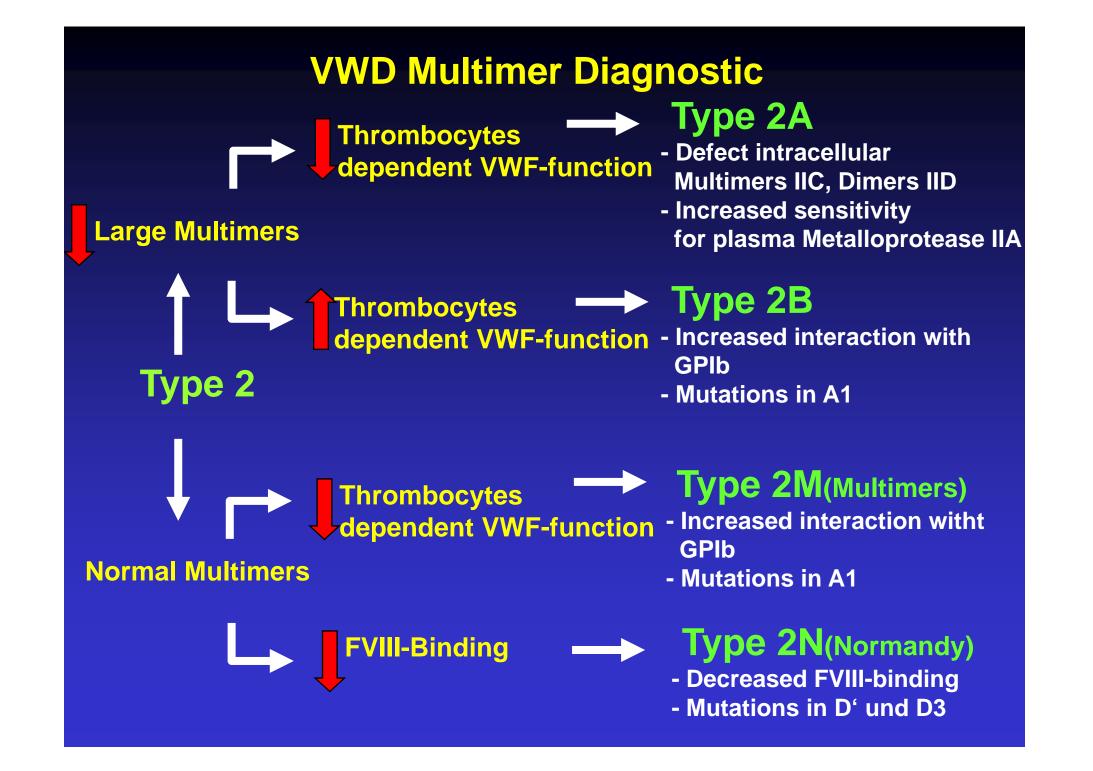
Single Factor activity (FVIII:C)

Thrombelastography

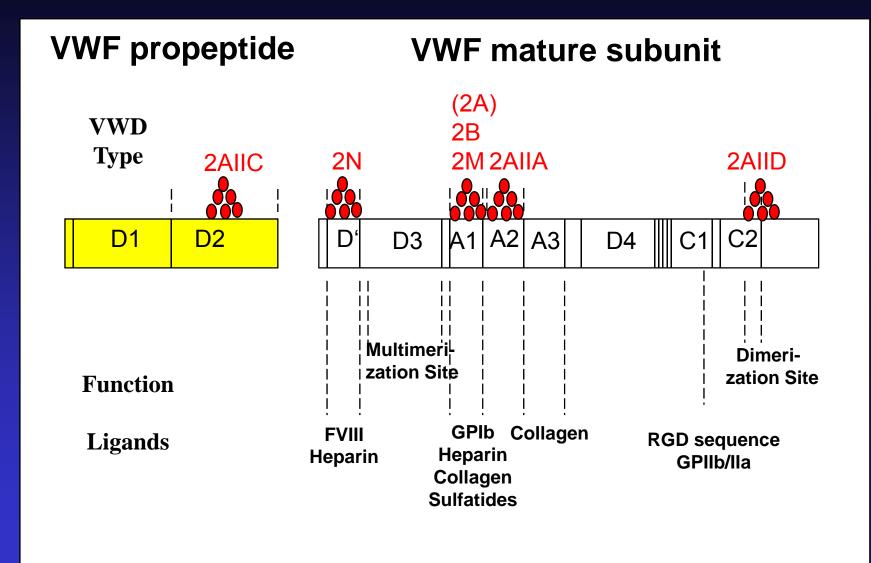

Thrombin generation assays



Phenotype Genotype Determinants for Phenotype


- Inhibitor formation
- Severe haemophiliacs with mitigated bleeding phenotype
- VWD
- Assay Discrepancies between one- and two stage FVIII-Assays

VWD Type 2



Schneppenheim et al. Blood 2001

Genotype - Phenotype - Correlation

Phenotype Genotype Determinants for Phenotype

- Inhibitor formation
- Severe haemophiliacs with mitigated bleeding phenotype
- VWD
- Assay Discrepancies between one- and two stage FVIII-Assays

Discrepancies

Up to 1/3 of cases with non severe haemophilia A

show inherited discrepancies

FVIII:C one-stage > FVIII:C chromogenic

One-stage : two-stage ratios ≥2.0

or

FVIII:C one-stage < FVIII:C chromogenic One-stage : two-stage ratios ≤0.5

- fail to diagnose some cases of mild haemophilia

which level to assign for diagnosis

– which level to refer for dosing during treatment Which assay is giving the true FVIII:C?

Poulsen et al. Haemophilia 2009

FVIII one-stage > FVIII chromogenic

Mutation	One-stage	Chromogenic
Ala284Glu	34%	9%
Ala 284Pro	Mazurier et al. 1997	
Ser289Leu	33%	9%
Arg527Trp	27%	13%
Arg531Cys	14-18%	2-9%
Arg531His	42%	11%
Asn694lle	19%	9%
Arg698Trp	22%	6%
Arg698Leu	42%	16%
Arg1749His	52%	8%
Ser1791Pro	19-32%	5-9%
Leu1932Phe	19%	11%
Met1947Val	93%	23%
His1954Leu	106%	35%
Leu1978Phe	10%	2-4%
Asn2228Lys	Casey et al. unpublished	

Rudziki et al. 1995, Keeling et al. 1999, Schwaab et al. 2000, Pipe et al. 2001, Hill et al. 2005, Lucia et al. 2005, Rodgers et al. 2006, Cid et al. 2008

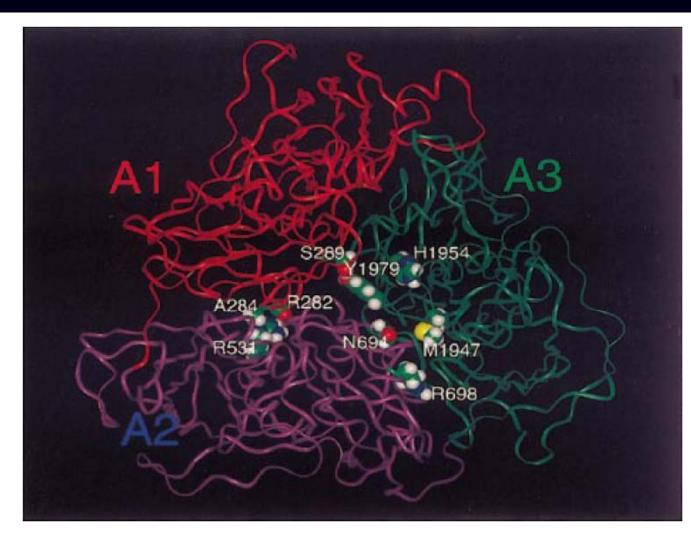
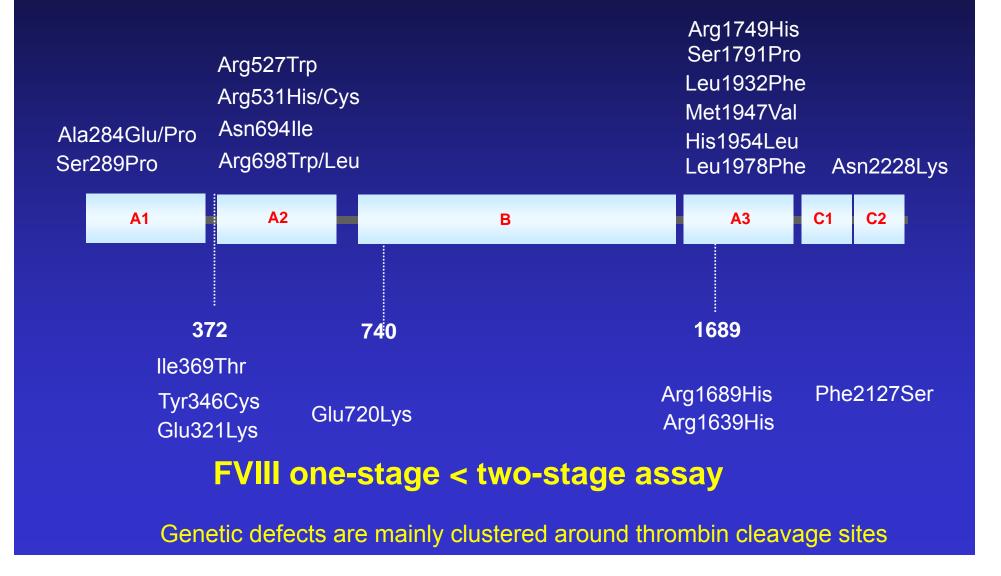


Figure 5. Hemophilic mutations with 1-st/2-st discrepancy are located at or close to the A domain interfaces. Global view of the FVIII A domain model marking the positions of ^{ALA}284, ^{ARG}531, and ^{ARG}282 at the A1-A2 interface; ^{SER}289 and ^{TYR}1979 at the A1-A3 interface close to the pseudo-threefold axis; and ^{HIS}1954, ^{ASN}694, ^{MET}1947, and ^{ARG}698 at, or adjacent to, the A2-A3 interface.

Pipe, S. W. et al. Blood 2001;97:685-691

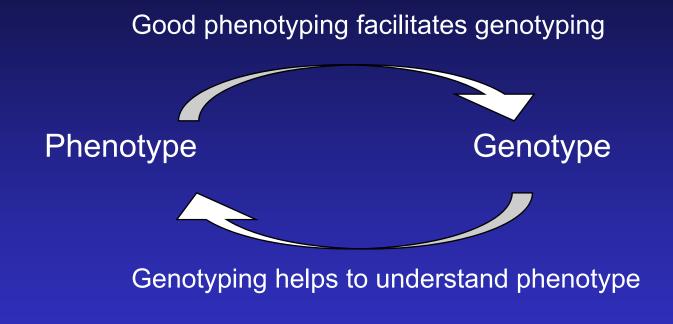

FVIII one-stage < two-stage assay

Mutation	FVIII:C (1- st)	FVIII:C (2-st)	FVIII:C Ag	Severity
Glu321Lys ¹	39	78	-	Mild
Tyr346Cys ²	34	110	118	Mild
lle369Thr ³	14 ± 5	90 ± 15 / 43 ± 9	118 ± 29	Mild
Glu720Lys ⁴	10-30	60-90	n.d.	Mild
Arg1639His⁵	24	117	198	Mild
Arg1689His⁵	25-26	99-111	74-160	Mild- Severe
Phe2127Ser ³	10 ± 4	47 ± 13 / 50 ± 19	58 ± 20	Mild

¹ Goodeve et al. 2001; ² Mumford et al. 2001/2002; ³ Trossaërt et al. 2007; ⁴ Roelse et al. 1999; ⁵ Cid et al. 2008

FVIII one-stage > FVIII chromogenic

Genetic defects are mainly clustered in the A1/A2/A3 domain interfaces


FVIII:C one-stage > FVIII:C chromogenic

- Hereditary discrepancy
- More common
- Facilitated dissociation of A2
- Which FVIII:C to refer?
- Clinically these patients bleed

FVIII:C one-stage < FVIII:C chromogenic

- Hereditary discrepancy
- Less common
- Alteration of thrombin cleavage
- Missing diagnosis with 2-stage
- Clinically patients bleed rare

Phenotype and Genotype assist each other


The Team

Bonn/ Frankfurt

Laurynas Daugela (BN) Daniel Delev (BN) Christof Geisen (F) Effat Hosseini (F) Vytautas Ivaskevicius (BN) Maria Lim-Eimer (F) Milka Marinova (BN) Anni Pavlova (BN) Bettina Schirdewahn (F) Gabriele Spohn (BN/F) Matthias Watzka (BN/F) Philipp Westfofen (BN)

Würzburg

Andreas Fregin Tanja Förster Simone Rost Jörg Schröder Clemens Müller-Reible