Molecular characterization of Iranian patients with type 3 von Willebrand disease

Shahbazi S, Mahdian R, Ala FA, Lavergne JM, Denis CV, Christophe OD.

INSERM U.770, Le Kremlin-Bicêtre , France

Iranian comprehensive hemophilia care center , Tehran , Iran

LIFE-CYCLE OF VON WILLEBRAND FACTOR (VWF)

VWF BIOSYNTHESIS

Endothelial cells

megakaryocytes

VWF BIOSYNTHESIS

VON WILLEBRAND DISEASE (VWD)

*VWD is the most common inherited bleeding disorder in human with a frequency of about 1:250

Diagnosed by VWF antigen assay (VWF:Ag), the ristocetin cofactor assay (VWF:RCo) and FVIII pro-coagulant function (FVIII:C)

Mutation detection helps in accurate diagnosis

VON WILLEBRAND FACTOR GENE

✤ VWF is encoded by a large gene of ~178kb.

✤The gene contains 52 exons.

✤It is located at the tip of the short arm of chromosome 12.

VON WILLEBRAND DISEASE (VWD)

VWD has 3 main types

TYPE 1

Partial quantitative defects, accounting for ~80% of the cases

Limited bleeding symptoms, normal activity of residual VWF

TYPE 2

- Qualitative defects
- 2A = VWF is more susceptible to cleavage
- 2B = increased affinity of VWF for GPIb
- 2M = defective binding of VWF to GPIb
- 2N = decreased affinity of VWF for FVIII

N 2M 2A 2B N

VWD TYPE 3

>Type 3 VWD is a severe autosomal-recessive form of the disease

>VWF levels is extremely low or undetectable and there is a moderate deficiency of FVIII (levels <10%)

> The symptoms mostly consist of excessive mucocutaneous bleeding such as epistaxis and gingival bleeding

TYPE 3 VWD MUTATIONS

> Mutations may be scattered over the entire gene

Mutations are mostly two 'null' alleles either in an homozygous or compound heterozygous state

http://www.ragtimedesign.com/vwf/mutation/mutationtableresults.php

- > The prevalence of the disease ranges from 1/million to 2/million individuals globally
- In certain locations where consanguineous marriages are more frequent, the prevalence can be higher
- In 2000, a national registry of inherited coagulation disorders lists 600 Iranian patients, with a prevalence as high as 6/million Lak M, Peyvandi F, Mannucci P. M, British Journal of Haematology, 2000, 111, 1236-1239.

TYPE 3 VWD IN IRAN

N°	Sex/age (M/F year)	Nucleotide substitution	Amino acid substitution	Exon	Genotype
1	F/26	652C →T	Q218X	6	Homozygous
2	F/16	1093C →T	R365X	9	Homozygous
3	M/21	1930G →T	E644X	15	Homozygous
4	F/11	2116C →T	Q706X	16	Homozygous
5	F/20	3931C →T	Q1311X	28	Homozygous
6	F/52	4036C →T	Q1346X	28	Homozygous
7	F/36	4975C → T	R1659X	28	Homozygous
8	M/16	5941G →T	E1981X	35	Homozygous
9	M/8	139G→C	D47H	3	Homozygous
10	F/17	6520T → <i>G</i>	C2174G	37	Homozygous
11	M/19	1110-1 <i>G</i> →A	FS	10	Homozygous
12	F/18	788del24	263del8	7	Homozygous
13	M/20	7674insC	FS	45	Homozygous
14	M/24	7683delT	FS	45	Homozygous

Baronciani L, Cozzi G, Canciani MT, Peyvandi F, Srivastava A, Federici AB, et al. *Blood Cells Mol Dis* 2003; **30**: 264-70.

✓ Blood samples of ten Iranian patients with type 3 VWD were collected

✓ VWF gene evaluated by PCR - sequencing method in a 96-well plate format of PCR reaction for each patient to prevent mixing up of the DNA samples

✓ All exons and their splice site junctions and flanking regions were amplified

✓ At least 30 nucleotides of intronic sequence were included at both sides of each amplicon

✓ Primers were designed to ensure no amplification of the Pseudogene

N°	Sex/age (M/F year)	VWF:Ag (U/dl)	Consanguinity	Nucleotide substitution	Amino acid substitution	Exon	Genotype
1	M/24	< 5	YES	5941 G→T	E1981X	35	Homozygous
2	F/25	< 5	NO				
3	M/35	< 5	YES	2443-1 <i>G</i> →C	Splice site	19	Homozygous
4	F/21	< 5	YES	310 <i>C</i> →T	Q104X	4	Homozygous
5	M/48	< 5	YES	2377 C→T	Q793X	18	Homozygous
6	F/29	< 5	YES	3237delA	P1079PfsX39	25	Homozygous
7	F/55	< 5	NO	2377 C→T	Q793X	18	Homozygous
8	F/35	< 5	YES	2377 C→T	Q793X	18	Homozygous
9	M/28	< 5	YES				
10	M/23	< 5	YES	1110-1 <i>G</i> →A	Splice site	10	Homozygous

N°	Sex/age (M/F year)	VWF:Ag (U/dl)	Consanguinity	Nucleotide substitution	Amino acid substitution	Exon	Genotype
1	M/24	< 5	YES	5941 G→T	E1981X	35	Homozygous
2	F/25	< 5	NO				
3	M/35	< 5	YES	2443-1 <i>G</i> →C	Splice site	19	Homozygous
4	F/21	< 5	YES	310 <i>C</i> →T	Q104X	4	Homozygous
5	M/48	< 5	YES	2377 C→T	Q793X	18	Homozygous
6	F/29	< 5	YES	3237delA	P1079PfsX39	25	Homozygous
7	F/55	< 5	NO	2377 C→T	Q793X	18	Homozygous
8	F/35	< 5	YES	2377 C→T	Q793X	18	Homozygous
9	M/28	< 5	YES				
10	M/23	< 5	YES	1110-1 <i>G</i> →A	Splice site	10	Homozygous

N°	Sex/age (M/F year)	VWF:Ag (U/dl)	Consanguinity	Nucleotide substitution	Amino acid substitution	Exon	Genotype
1	M/24	< 5	YES	5941 G→T	E1981X	35	Homozygous
2	F/25	< 5	NO				
3	M/35	< 5	YES	2443-1 <i>G</i> →C	Splice site	19	Homozygous
4	F/21	< 5	YES	310 <i>C</i> →T	Q104X	4	Homozygous
5	M/48	< 5	YES	2377 <i>C</i> →T	Q793X	18	Homozygous
6	F/29	< 5	YES	3237delA	P1079PfsX39	25	Homozygous
7	F/55	< 5	NO	2377 C→T	Q793X	18	Homozygous
8	F/35	< 5	YES	2377 C→T	Q793X	18	Homozygous
9	M/28	< 5	YES				
10	M/23	< 5	YES	1110-1 <i>G</i> →A	Splice site	10	Homozygous

N°	Sex/age (M/F year)	VWF:Ag (U/dl)	Consanguinity	Nucleotide substitution	Amino acid substitution	Exon	Genotype
1	M/24	< 5	YES	5941 <i>G</i> →T	E1981X	35	Homozygous
2	F/25	< 5	NO				
3	M/35	< 5	YES	2443-1 <i>G</i> →C	Splice site	19	Homozygous
4	F/21	< 5	YES	310 <i>C</i> →T	Q104X	4	Homozygous
5	M/48	< 5	YES	2377 C→T	Q793X	18	Homozygous
6	F/29	< 5	YES	3237delA	P1079PfsX39	25	Homozygous
7	F/55	< 5	NO	2377 C→T	Q793X	18	Homozygous
8	F/35	< 5	YES	2377 C→T	Q793X	18	Homozygous
9	M/28	< 5	YES				
10	M/23	< 5	YES	1110-1 <i>G</i> →A	Splice site	10	Homozygous

N°	Sex/age (M/F year)	VWF:Ag (U/dl)	Consanguinity	Nucleotide substitution	Amino acid substitution	Exon	Genotype
1	M/24	< 5	YES	5941 <i>G</i> →T	E1981X	35	Homozygous
2	F/25	< 5	NO				
3	M/35	< 5	YES	2443-1 <i>G</i> →C	Splice site	19	Homozygous
4	F/21	< 5	YES	310 <i>C</i> →T	Q104X	4	Homozygous
5	M/48	< 5	YES	2377 C→T	Q793X	18	Homozygous
6	F/29	< 5	YES	3237delA	P1079PfsX39	25	Homozygous
7	F/55	< 5	NO	2377 C→T	Q793X	18	Homozygous
8	F/35	< 5	YES	2377 C→T	Q793X	18	Homozygous
9	M/28	< 5	YES				
10	M/23	< 5	YES	1110-1 <i>G</i> →A	Splice site	10	Homozygous

SUMMARY

- Three entirely new mutations were identified: Q793X, Q104X and 3237delA
- The Q793X mutation appears relatively common since it was found in three unrelated patients
- ✓ The splice site mutation 24431-1 GুC had never been identified in an Iranian patient before
- ✓ No inhibitor was detected in these patients

The mutations didn't show any correlation with either bleeding severity or developing of inhibitory anti-VWF antibody

Irrespective of the position of the mutations, similar symptoms were observed in type 3 VWD patients:

There are two hypotheses :

 Mutations might act by causing intracellular degradation of mutated VWF

✓ A mechanism called <u>nonsense-mediated decay pathway</u> degrades mRNA which carries a premature stop codon

In a canine VWD study, following a null allele (255delC) in exon 4, no VWF mRNA nor truncated proteins, were detected in the aortic endothelial cells (*Haberichter, et al., 2005*)

✓ A homozygous mutation in exon 45 (7636A⊃T) in a type 3 VWD patient strongly reduced the mRNA of mutant allele (Eikenboom, et al., 1992)

A homozygous mutation in exon 18 (2430delC) in a type 3 VWD patient caused no decrease in mRNA level (Mohlke, et al., 1996)

The presence of mutant or truncated VWF could be of critical importance

VWF is required for Weibel-Palade body formation

Are mutant or truncated VWF capable to potentially form WPBs?

Are type 3 VWD patients faced to more complications?

Inflammation (P-selectin, Ang-2)
Angiogenesis (Ang-2)

Bone physiology (OPG)

ACKNOWLEDGEMENTS

Many thanks to all are working at :

INSERM U770, Le Kremlin-Bicêtre , France

Iranian comprehensive hemophilia care center , Tehran , Iran,

Special thanks to Dr. Ghasem Rastegar Lari

I would also like to acknowledge the contribution of VWD type 3 patients who took part in this study.